
A Rule-Based Approach to Number Spellout 
by Richard Gillam 
Advisory Software Engineer 
Center for Java Technology–Silicon Valley 
IBM Corp. 

One of the more important areas of software internationalization is that of 
numeric formatting and parsing—that is, the translation of numeric values to 
their textual representation and back.  But the bulk of the work done in this area 
has been concerned with formatting and parsing values written as numerals, and 
most of that has been centered on formatting and parsing so-called “Arabic” 
numerals (since real Arabic text actually uses a different set of numeral symbols 
than those used in the West, we’ll use the term “Western numerals” instead), 
with most of the rest centered on Han characters and on other numeration 
systems that use the same positional format as Western numerals.  
Comparatively little work has been done on the problem of formatting and 
parsing numeric values expressed in words. 

Spelling out numeric values in words (we’ll use the phrase “number spellout” to 
refer to this from now on) is actually a relatively useful capability.  Financial 
applications spell out numeric values on checks and wire-transfer directives 
because spelled-out numbers are harder to counterfeit.  Number spellout can also 
have great utility in text-to-speech and speech recognition systems, where it 
would be much more natural for the user to say “three thousand four hundred 
twenty-six dollars and fifty-two cents” than, say, “command dollar three comma 
four two six point five two end command.” 

We in the Taligent International group (now part of IBM’s Center for Java 
Technology) first encountered this problem when a client requested that we add 
an internationalizable number-spellout capability to our C++ International 
Classes product.  After considering and rejecting several approaches, we settled 
on a simple yet very powerful approach to this problem that makes use of a list 
of rules.  As a bonus, it turns out this technology is powerful and extensible 
enough to work for a variety of other number-formatting problems that are more 
complicated than merely translating a number into Western numerals and back. 

The problem 

Solving the number-spellout problem in English is a relatively easy thing to do—
algorithms to do this are well-known and widely used.  The code usually looks 
something like this: 
 
private static final String[] ones = 
 { "zero", "one", "two", "three", "four", "five", "six", "seven", 
   "eight", "nine" }; 
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private static final String[] teens = 
 { "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", 
     "sixteen", "seventeen", "eighteen", "nineteen" }; 
private static final String[] tens = 
 { "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", 
   "eighty", "ninety" }; 
private static final String hundred = " hundred"; 
private static final String thousands = 
 { " thousand", " million", " billion", " trillion" }; 
 
public String spellout(int x) { 
 if (x < 10) 
  return ones[x]; 
 if (x < 20) 
  return teens[x – 10]; 
 if (x < 100) { 
  if (x % 10 == 0) 
   return tens[x / 10]; 
  else 
   return tens[x / 10] + "-" + ones[x % 10]; 
 } 
 if (x < 1000) { 
  if (x % 100 == 0) 
   return ones[x / 100] + hundred; 
  else 
   return ones[x / 100] + hundred + " " + 
      spellout(x % 100); 
 } 
 if (x < 1000000) { 
  if (x % 1000 == 0) 
   return spellout(x / 1000) + thousands[0]; 
  else 
   return spellout(x / 1000) + thousands[0] + " " + 
      spellout(x % 1000); 
 } 
 if (x < 1000000000) { 
  if (x % 1000000 == 0) 
   return spellout(x / 1000000) + thousands[1]; 
  else 
   return spellout(x / 1000000) + thousands[1] + " " + 
      spellout(x % 1000000); 
 } 
} 

The problem with this approach is that it doesn’t internationalize well.  
Obviously the first step would be to alter the algorithm to load all of the words 
from resource files rather than hard-coding them.  This is a good first step, but 
it’s not enough.  Other languages need more canned strings than English does. 

For instance, the punctuation between the digit positions varies between 
languages.  In English and French, for example, there’s a hyphen between the 
tens digit and the ones digit, but in Spanish, the word “y” separates them.  
Russian uses a space. Italian, Greek, and Swedish use nothing at all: the tens and 
ones digits run together into a single word. 
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Likewise, the punctuation between the other digit positions varies between 
languages, and often differs from the punctuation between the ones and tens 
digits.  In English and French, a hyphen is used between the ones and tens digits, 
but spaces are used between the others.  But in German, the whole number runs 
together into a single word.  In Italian, the number runs together into a single 
word when it’s smaller than 100,000, but is broken into multiple words for large 
numbers. 

So you would also need canned strings for the separators between the words that 
make up the number.  Unfortunately, this also isn’t good enough.  In most 
languages, the words for the values from 11 to 19 are based on the words for the 
values from 1 to 9, but are not simple concatenations.  In English, for example, 15 
is “fifteen” and not “fiveteen.”   This also happens for the words for the tens 
digits in most languages.  In some languages, this kind of thing also applies to 
other groups of words.  In Spanish, for example, numbers between 30 and 99 are 
written with “y” between the digit places: 34 is “treinta y cuatro.” But the 
numbers between 21 and 29 contract the phrase into a single word: “veinte y 
cinco” (25) becomes “veinticinco.”  In fact, this contraction cannot be handled 
algorithmically because the spelling of the ones digit sometimes changes in 
contraction.  22 is “veintidós,” not “veintidos.” 

The same thing happens with the hundreds place in Spanish and Greek.  In 
Spanish, for example, the multiplier and the word for 100 run together into a 
single word—200 is “doscientos,” not “dos cientos”—but the multiplier often 
changes spelling in contraction—500 is “quinientos,” not “cincocientos.” 

So you would need canned strings for the twenties and hundreds in addition to 
the ones, teens, and tens.  Even this isn’t enough.  In many languages, if the 
multiplier before the word for “hundred” or “thousand” is 1, it is omitted: in 
French, 100 is “cent,” not “un cent.”  Furthermore, in many languages, the words 
for 100, 1000, and so forth pluralize when the multiplier is greater than 1—in 
French again, 100 is “cent,” but 200 is “deux cents.”  And in Spanish, the form of 
the word for 100 also changes when there are digits to the right of it: 100 is 
“cien,” but 101 is “ciento uno.” 

So we would need additional strings to account for the possible variant spellings 
of the words for 100, 1000, and so on.  This is a lot of data, and much of it is only 
necessary in a few languages.  But even with all these variant strings, we still 
can’t accommodate even the common European languages fully.  You also need 
variant code in the algorithm itself.  In German, for example, the ones digit 
comes before the tens digit: 23 is “dreiundzwanzig,” not “zwanzigunddrei.”  In 
French, “et” is inserted between the tens and ones digits, but only when the ones 
digit is 1: 21 is “vingt-et-un,” but 22 is “vingt-deux.”  In Italian, when the tens 
digit ends with a vowel and the ones digit begins with a vowel, the vowel is 
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dropped from the tens digit: 50 is “cinquanta,” and 52 is “cinquantadue,” but 51 
is “cinquantuno.” In Greek, the word for each tens digit has an accent mark that 
disappears when combined with a ones digit: 30 is “τριάντα” (“triánta”) but 31 
is “τριανταένα” (“triantaéna”). 

Another area that has to be variable is major groupings.  In American English 
and the other European languages, large numbers are grouped by thousands 
(i.e., after a thousand, a new word is introduced every factor of 1,000).  In British 
English, however, large numbers are grouped by million (a “billion” in British 
English is a “trillion” in American English; what we call a “billion” is called a 
“thousand million” in Britain).  More importantly, in Japanese, large numbers are 
grouped by ten thousand, rather than by thousand. 

Finally, French has a couple peculiarities of its own:  In European French, there 
are no words for 70, 80, or 90.  The numbers from 70 up are rendered as 
“soixante-dix,” “soixante et onze,” “soixante-douze,” “soixante-treize,” and so on 
(literally, “sixty-ten,” “sixty and eleven,” “sixty-twelve,” “sixty-thirteen,” etc.)  80 
is rendered as “quatre vingts” (literally, “four twenties”), and the numbers 
proceed by score from there (i.e., 81 is “quatre-vingt-un” (“four-twenty-one”), 90 
is “quatre-vingt-dix” (“four-twenty-ten”), 91 is “quatre-vingt-onze” (“four-
twenty-eleven”) and so on).  In addition, the numbers between 1,100 and 1,200 
are rendered as “onze cents…” (literally, “eleven hundred…”) instead of “mille 
cent…” (“one thousand one hundred…”). 

Clearly, the procedures for spelling out numbers in different languages vary 
along too many axes for it to be feasible to design a number-spellout engine 
based on canned strings and user-selectable options that will cover everything 
well.  It is theoretically possible, of course, but such an algorithm would be large 
and complicated, difficult to use, and rigid and inflexible.  If there were a 
language with unique requirements the author of the formatter wasn’t aware of 
when he wrote the formatter, that language’s numbers wouldn’t be formattable. 

This seemed to leave us with two options: either simply allow a whole new 
formatting function to be written for each language, or design a programmable 
formatter and a programming language designed specifically for describing how 
numbers are spelled out.  We at Taligent have come to prefer data-driven 
extensibility over exposing a subclassing API when it’s possible to express an 
object’s behavior in a metalanguage that is simpler and easier to understand than 
C++ or Java would be.  This is the approach we took with number spellout. 

Describing spellout procedures 
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Despite the widespread differences in how various languages spell out numbers, 
there were a few important commonalities: Every language we researched lends 
itself well to a recursive algorithm: the digits to the right of the hundreds 
position, for example, usually are spelled out the same way whether or not there 
are any digits to their left.  Likewise, the multiplier on “hundred,” “thousand,” 
or “million” usually has the same form as the number would standing alone.  
This leads to an algorithm that depends on isolation of certain digits and 
recursion to do its job.  This type of approach turns out to be simple, elegant, and 
very powerful and flexible. 

The procedure for formatting a number is expressed as a semicolon-delimited list 
of rules.  In its simplest form, a rule is simply the text to return when presented 
with a number, so the spellout rules for English start out very simply: 
 
zero; 
one; 
two; 
three; 
four; 
five; 
six; 
seven; 
eight; 
nine; 
ten; 
eleven; 
twelve; 
thirteen; 
fourteen; 
fifteen; 
sixteen; 
seventeen; 
eighteen; 
nineteen; 
twenty; 

Now, for numbers greater than twenty, we can use this same list of rules to 
format the digit in the ones place.  We use “>>” to denote that: 
 
twenty; 
twenty->>; 

When the number is formatted, the ones digit is isolated, the word for it is looked 
up in this same list, and then inserted into the result string where the “>>” was 
(the “>>”, of course, is deleted). 

This approach will work for the numbers from 21 to 29, so we don’t need 
separate rules for each of those numbers.  We can avoid providing a rule for 
every number by specifying the next rule’s base value—that is, the lowest value to 
which a rule applies.  We do that by appending a number to the front of the rule 
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and separating it from the rule text with a colon (whitespace after the colon is 
ignored): 
 
twenty; 
twenty->>; 
30: thirty; 

A rule applies to all numbers from its base value to one less than the next rule’s 
base value.  If a rule doesn’t specify a base value (such as those is the first list 
above), its base value is the previous rule’s base value plus one (and the first rule 
in the list has a base value of 0, unless otherwise specified). 

The rule for 31 through 39 has the same form as the one for 21 through 29, giving 
us this rule set so far: 
 
zero; one; two; three; four; five; six; seven; eight; nine; 
ten; eleven; twelve; thirteen; fourteen; fifteen; sixteen; seventeen; 
   eighteen; nineteen; 
twenty; twenty->>; 
30: thirty; thirty->>; 

(Whitespace after semicolons is ignored, allowing you to add, or omit, carriage 
returns, spaces, and tabs as appropriate to enhance readability.) 

Now, of course, the rules for 21 and 31 are exactly the same as the rules for 20 
and 30, except for the hyphen and the “>>” token (we’ll call the “>>” a 
substitution from now on).  We could abbreviate these two rules by simply 
enclosing the added text in brackets: 
 
twenty[->>]; 
30: thirty[->>]; 

A rule with a range of text in brackets is automatically expanded into two rules: 
one without the text in brackets, and a second one with the bracketed text 
(without the brackets, of course) and a one-higher base value.  So this much 
syntax gets us all the numbers from 0 to 99: 
 
zero; one; two; three; four; five; six; seven; eight; nine; 
ten; eleven; twelve; thirteen; fourteen; fifteen; sixteen; seventeen; 
   eighteen; nineteen; 
twenty[->>]; 
30: thirty[->>]; 
40: forty[->>]; 
50: fifty[->>]; 
60: sixty[->>]; 
70: seventy[->>]; 
80: eighty[->>]; 
90: ninety[->>]; 
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The rule for 100 builds on what comes before it: we already have all the rules we 
need to format the tens and ones digits, so we can take advantage of recursion to 
handle those digit positions.  Again, we use the “>>” notation to denote this: 
 
100: one hundred; 
101: one hundred >>; 

Notice that the meaning of “>>” has changed.  In the rules for 20 through 90, 
“>>” referred to just the ones digit.  Here, it refers to the tens and ones digits 
together.  The meaning of the “>>” token is context-dependent.  Which digits it 
refers to depends on the rule’s base value.  To determine the meaning of the 
substitution token, we calculate the rule’s power of 10, which is the common 
logarithm of the base value, rounded to the next-lowest integer.  So for the 90 
rule, the power of 10 is 1 (1.954… rounded down to the nearest integer), and for 
the 100 rule, the power of 10 is 2 (exactly).  When filling in the substitution, we 
take the value being formatted modulo 10 to the power of the rule’s power of 10.  
For 99, the substitution value would be 99 mod 10, or 9.  For 109, the substitution 
value is 109 mod 100 (because the rule’s power of 10 is now 2), which is also 9.  
The context-sensitivity of the substitution token is one of the keys to this 
language’s simplicity. 

Also note that we begin to see multiple levels of recursion here: If you format 123 
with this rule set, you’ll start with “one hundred >>”, and then go back and look 
up a rule for 23:  This will give you “twenty->>”, so you now would have “one 
hundred twenty->>”.  Then you’d look up the rule for 3, yielding “one hundred 
twenty-three.” 

Also note that we can still use the bracket notation at this level, compressing the 
two rules listed above into one: 
 
100: one hundred[ >>]; 

Of course, we can also use this same set of rules to handle the word before 
“hundred.”  This is denoted with “<<”: 
 
100: << hundred[ >>]; 

We’ll call “<<” the major substitution and “>>” the minor substitution.  Just as the 
minor substitution is filled in by taking the value being formatted modulo 10 to 
the rule’s power of 10, the major substitution is filled in by taking the value being 
formatted divided by 10 to the rule’s power of 10 (and truncated to an integer, of 
course).  So to format 234, we’d start with “<< hundred >>”, fill in the minor 
substitution by looking up an appropriate rule for 34, giving us “<< hundred 
thirty->>”, fill in the new minor substitution by looking up an appropriate rule 
for 4, giving us “<< hundred thirty-four”, and finally, fill in the major 
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substitution by dividing 234 by 100 and looking up an appropriate rule for 2: 
“two hundred thirty-four.” 

So the rule for 101 will actually work for all values from 101 to 999.  Or will it? 

If we try to format 200 with this rule set, we’ll actually use the rule for 101, which 
includes a minor substitution.  200’s minor substitution value is 0, so we’ll get 
“two hundred zero.”  This anomaly is accounted for in the algorithm, rather than 
the rule syntax: If a rule has both major and minor substitutions and the value 
being formatted has a minor-substitution value of 0, we roll back and use the 
rule that precedes the current rule in the list.  So the rule for 101 actually doesn’t 
cover the entire range from 101 to 999—100, 200, 300, 400, 500, 600, 700, 800, and 
900 are covered by the rule for 100 instead. 

This small addition to the algorithm simplifies tremendously both the 
description language and the actual algorithm.  Without it, you’d either need far 
more rules to get the right effect, or the algorithm would have to be extended to 
deal explicitly with optional text in the rules: Instead of expanding to two rules, a 
rule that included [] would still be a single rule that would contain both 
mandatory and optional text.  This drastically increases the state that has to be 
carried around in each rule just to achieve the same effect we achieve through the 
use of the “rollback rule” described above. 

So what if you want “two hundred zero”?  Just add it to the rule for 100: 
 
100: << hundred zero; << hundred >>; 

With this combination of new features, we can get from 0 to 999.  The rule for 
1000 looks just like the rule for 100: 
 
1000: << thousand[ >>]; 

Here, the rule’s power of 10 is 3, so the meanings of the substitutions change 
again.  Now the minor substitution handles the value being formatted mod 1000, 
and the major substitution handles the value being formatted divided by 1000. 

So the full rule set now looks like this: 
 
zero; one; two; three; four; five; six; seven; eight; nine; 
ten; eleven; twelve; thirteen; fourteen; fifteen; sixteen; seventeen; 
   eighteen; nineteen; 
twenty[->>]; 
30: thirty[->>]; 
40: forty[->>]; 
50: fifty[->>]; 
60: sixty[->>]; 
70: seventy[->>]; 
80: eighty[->>]; 
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90: ninety[->>]; 
100: << hundred[ >>]; 
1000: << thousand[ >>]; 

In English, notice that we don’t start using a new word until we get to 1,000,000.  
So this set of rules is sufficient to format numbers from 0 all the way to 999,999.  
What the major groupings are based on is implicit in where new rules are added 
to the list.  So each rule covers an ever-larger range of numbers, leading to a full 
rule set that looks like this: 
 
zero; one; two; three; four; five; six; seven; eight; nine; 
ten; eleven; twelve; thirteen; fourteen; fifteen; sixteen; seventeen; 
   eighteen; nineteen; 
twenty[->>]; 
30: thirty[->>]; 
40: forty[->>]; 
50: fifty[->>]; 
60: sixty[->>]; 
70: seventy[->>]; 
80: eighty[->>]; 
90: ninety[->>]; 
100: << hundred[ >>]; 
1000: << thousand[ >>]; 
1,000,000: << million[ >>]; 
1,000,000,000: << billion[ >>]; 
1,000,000,000,000: << trillion[ >>]; 
1,000,000,000,000,000: OUT OF RANGE!; 

(We allow commas, periods, and spaces in the base value to enhance readability; 
the parser ignores them.) 

For British English, which defines a billion as a million million instead of a 
thousand million as in the U.S., we just change the frequency of the last few 
rules: 
 
1000: << thousand[ >>]; 
1,000,000: << million[ >>]; 
1,000,000,000,000: << billion[ >>]; 
1,000,000,000,000,000,000: OUT OF RANGE!; 

1,000,000,000 will now use the rule for 1,000,000, producing “one thousand 
million.” 

Note the final rule in each of these lists.  Since the upper limit of the range a rule 
applies to is determined by the next rule in the list, the last rule in the list has no 
upper limit.  It applies to every number greater than or equal to its base value.  
When the numeric type doesn’t impose an upper limit (our implementation uses 
the Java long type, whose upper limit is 1.84 × 1019), the base value of the last 
rule in the list can be used to specify the upper limit for the rule set.  It is a useful 
convention to code an error message as the last rule’s rule text to show this. 
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Trying the approach with foreign languages 

This approach obviously works quite well for English, but what about other 
languages?  Well, in Spanish, we can handle the numbers from 21 to 29 with 
more rules: 
 
cero; uno; dos; tres; cuatro; cinco; seis; siete; ocho; nueve; 
diez; once; doce; trece; catorce; quince; dieciséis; diecisiete; 
   dieciocho; diecinueve; 
veinte; veintiuno; veintidós; veintitrés; veinticuatro; 
   veinticinco; veintiséis; veintisiete; veintiocho; veintinueve; 
treinta[ y >>]; 
40: cuarenta[ y >>]; 
50: cincuenta[ y >>]; 
60: sesenta[ y >>]; 
70: setenta[ y >>]; 
80: ochenta[ y >>]; 
90: noventa[ y >>]; 

Notice also that we can specify that “y” is to go between the tens and ones digits 
simply by including “y” instead of “-” in the brackets of the tens rules. 

The differing form of “cien” depending on its context is also easily handled… 
 
100: cien; 
101: ciento >>; 
200: doscientos[ >>]; 

…as are the extra words for the hundreds place… 
 
300: trescientos[ >>]; 
400: cuatrocientos[ >>]; 
500: quinientos[ >>]; 
600: seiscientos[ >>]; 
700: setecientos[ >>]; 
800: ochocientos[ >>]; 
900: novecientos[ >>]; 

…and the fact that the word before “mil” is omitted if it’s “uno”: 
 
1000: mil[ >>]; 
2000: << mil[ >>]; 

In German, the numbers from 13 to 19 can be derived algorithmically, so we 
don’t need to spell them all out… 
 
null; eins; zwei; drei; vier; fünf; sechs; sieben; acht; neun; 
zehn; elf; zwölf; 
>>zehn; 

…and the fact that the ones digit comes before the tens digit is also easily 
handled by putting the substitution in a different place… 
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20: zwanzig; einundzwanzig; >>undzwanzig; 
30: dreißig; einunddreißig; >>unddreißig; 
40: vierzig; einundvierzig; >>undvierzig; 
50: fünfzig; einundfünfzig; >>undfünfzig; 
60: sechzig; einundsechzig; >>undsechzig; 
70: siebzig; einundsiebzig; >>undsiebzig; 
80: achtzig; einundachtzig; >>undachtzig; 
90: neunzig; einundneunzig; >>undneunzig; 

Notice also here that because 1 is “eins” in German rather than “ein,” we have to 
special-case the ones place.  We’ll look at an extension that eliminates this 
problem later. 

The rules for spelling out numbers in Han characters (used in Japanese, Chinese, 
and Korean) are particularly simple… 
 

� ; 一; 二; 三; 四; 五; 六; 七; 八; 九; 

十[>>]; 

20: <<十[>>]; 

100:百[>>]; 

200: <<百[>>]; 

1000:千[>>]; 

2000: <<千[>>]; 

…and the fact that CJK numerals group by ten thousand is easily handled by the 
spacing of the rules: 
 

10,000: <<万[>>]; 

100,000,000: <<億[>>]; 

1,000,000,000,000: <<兆[>>]; 

10,000,000,000,000,000: OUT OF RANGE! 

In French, things don’t work as well.  Again, we have to special-case two-digit 
numbers ending in 1… 
 
zéro; un; deux; trois; quatre; cinq; six; sept; huit; neuf; 
dix; onze; douze; treize; quatorze; quinze; seize; dix-sept; dix-huit; 
   dix-neuf; 
vingt; vingt-et-un; vingt->> 
30: trente; trente-et-un; trente->> 
40: quarante; quarante-et-un; quarante->>; 
50: cinquante; cinquante-et-un; cinquante->>; 
60: soixante; soixante-et-un; soixante->>; 
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…and for the numbers from 70 through 90, we have to throw up our hands and 
specify a separate rule for practically every value: 
 
70: soixante-dix; soixante et onze; soixante-douze; soixante-treize; 
   soixante-quatorze; soixante-quinze; soixante-seize; 
   soixante-dix-sept; soixante-dix-huit; soixante-dix-neuf; 
80: quatre-vingts; quatre-vingt->>; 
90: quatre-vingt-dix; quatre-vingt-onze; quatre-vingt-douze; 
   quatre-vingt-treize; quatre-vingt-quatorze; 
   quatre-vingt-quinze; quatre-vingt-seize; 
   quatre-vingt-dix-sept; quatre-vingt-dix-huit; 
   quatre-vingt-dix-neuf; 

We’re then in good shape up to 1099… 
 
cent[ >>]; 
200: << cents[ >>]; 
1000: mille[ >>]; 

…but when we get to 1,100, we run into another problem.  1,100 in French is 
“onze cents” (“eleven hundred”), not “mille cent” (“one thousand one 
hundred”), so we need to specify a new rule here: 
 
1100: onze cents[ >>]; 

The problem is that this rule’s power of 10 is 3, so the minor substitution will 
format the last three digits—1123 will come out at “onze cents cent vingt-trois” 
instead of “onze cents vingt-trois.”  We can achieve the correct result with no 
changes to the formatting algorithm if we can set this rule’s power of 10 to be 2 
instead of 3.  To do this, we introduce a new bit of syntax: 
 
1100>: onze cents[ >>]; 
1200: mille >>; 
2000: << mille[ >>]; 

The “>” after the base value tells the formatter’s constructor (which builds its 
internal tables based on the textual description) to reduce the rule’s power of 10 
by 1 from its calculated value.  This will cause the formatting algorithm to take 
the value being formatted mod 100, instead of 1000, to get the minor-substitution 
value.  We then add another rule at 1200 to go back to formatting the numbers as 
“mille deux cents (etc.)” and another rule at 2000 to put the major substitution 
before “mille.”  Problem solved. 

The full algorithm 

This approach can be used effectively for every language we researched, 
although it takes a little work to handle some.  To summarize, then, when a 
number-spellout formatter is created, the grammar described above is parsed to 
build a list of rules.  Each rule has a base value, a power of 10, rule text, and two 
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optional substitutions.  The table is sorted by base value.  To format a value, the 
program binary-searches the rule list to find the rule with the highest base value 
less than or equal to the value being formatted.  If the appropriate rule has both 
major and minor substitutions, but the value being formatted is an even multiple 
of ten raised to the rule’s power of 10, we back up and treat the preceding rule in 
the list as the appropriate rule.  The rule text is copied into the result string.  If 
the rule has a major substitution, we divide the value being formatted by 10 
raised to the rule’s power of 10 and call ourselves recursively to format the 
quotient, inserting the result into the result string at the major substitution 
position.  Likewise, if the rule has a minor substitution, we divide the value 
being formatted by 10 raised to the rule’s power of 10 and call ourselves 
recursively to format the remainder, inserting the result at the minor substitution 
position. 

To see how this works in practice, consider this example: 

We want to format 3,200,540 using the rule set for U.S. English given above.  That 
rule set, again (with the bracket notation taken out), is 
 
zero; one; two; three; four; five; six; seven; eight; nine; 
ten; eleven; twelve; thirteen; fourteen; fifteen; sixteen; seventeen; 
   eighteen; nineteen; 
twenty; twenty->>; 
30: thirty; thirty->>; 
40: forty; forty->>; 
50: fifty; fifty->>; 
60: sixty; sixty->>; 
70: seventy; seventy->>; 
80: eighty; eighty->>; 
90: ninety; ninety->>; 
100: << hundred; << hundred >>; 
1000: << thousand; << thousand >>; 
1,000,000: << million; << million >>; 
1,000,000,000: << billion; << billion >>; 
1,000,000,000,000: << trillion; << trillion >>; 
1,000,000,000,000,000: OUT OF RANGE!; 

The highest base value less than the value being formatted is 1,000,001, so our 
result starts out as 
 
<< million >> 

This rule’s power of 10 is 6, so to fill in the major substitution, we divide 
3,200,540 by 1,000,000, giving us 3.  We look up a rule for 3, which gives us 
 
three million >> 
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To fill in the minor substitution, we divide 3,200,540 by 1,000,000 and take the 
remainder, giving us 200,540.  The closest matching rule is the one for 1,001, 
giving us 
 
three million << thousand >> 

To fill in the major substitution, we now divide 200,540 by 1,000, giving us 200.  
The closest matching rule for 200 is the one for 101, but since this rule has two 
substitutions and our minor-substitution value (i.e., 200 mod 100) is 0, we roll 
back and use the rule for 100 instead.  This gives us 
 
three million << hundred thousand >> 

To fill in this major substitution, we divide 200 by 100 (the rule’s power of 10 is 
2), giving us 2.  Looking up the rule for 2 gives us 
 
three million two hundred thousand >> 

This rule has no minor substitution, so we fall back to the previous level of 
recursion and fill in the minor substitution for 200,540.  We divide 200,540 by 
1,000 (the rule’s base value is 1,001, so its power of 10 is 3) and take the 
remainder, giving us 540.  The closest matching rule has a base value of 101 (we 
don’t roll back this time), giving us 
 
three million two hundred thousand << hundred >> 

To fill in the major substitution, we divide 540 by 100, giving us 5, and look up 
the rule for 5: 
 
three million two hundred thousand five hundred >> 

Then we take the remainder of 540 over 100, which is 40, and again we score a 
direct match on the rule for 40, giving us a finished result of 
 
three million two hundred thousand five hundred forty 

Parsing 

By design, all of Taligent’s formatting objects also parse, so we also had to come 
up with a parsing algorithm.  While the utility of the parsing algorithm is less 
obvious, one possible use is in speech-recognition systems. 

The design of the formatter is heavily oriented toward formatting, and as it turns 
out, applying the rule sets in reverse to translate from words back to a number is 
much more complicated and doesn’t scale as well. 
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To simplify the parsing algorithm’s work, we impose a restriction: the string 
passed to the parsing algorithm must contain only the text to be parsed: if the 
parsing algorithm fails to use all the characters, this is an error.  This allows us to 
parse the string right to left, which eliminates some special-case code (in 
particular, we don’t need a counterpart for the “rollback rule” in the formatting 
algorithm) and allows the parse to be more permissive (both “two hundred” and 
“two hundred zero” will parse correctly, as will both “twenty-one hundred” and 
“two thousand one hundred”). 

If you ignore substitutions for a minute, the basic principle is simple: start with 
the first rule in the rule list.  Match characters from the rule to characters from 
the string being parsed, beginning at the ends of the strings and working your 
way back to the beginning.  If you find a mismatch, go on to the next rule.  If you 
exhaust the characters in the string before you exhaust the characters in the rule, 
that’s also a mismatch, and you go on to the next rule.  If you exhaust the 
characters in the string and the characters in the rule at the same time, you have 
an exact match, and the result of the parse is that rule’s base value. 

Substitutions complicate the picture.  There are two cases to consider: rules that 
end with substitutions, and rules that don’t.  We explicitly ignore rules that end 
with substitutions for the first pass.  For rules that have substitutions in the 
middle or beginning, we match characters until we get to the substitution 
position.  At that point, the parse function calls itself recursively to fill in the 
substitution value.  If the recursive call is successful, the outer loop calculates a 
new result value from the current rule’s base value and the value of the rule that 
matched in the recursive call, and resumes matching characters wherever the 
recursive call left off. 

Rules that end in substitutions come into play when we exhaust the characters in 
the rule before we exhaust the characters in the string being parsed.  If this 
happens, we call ourselves recursively, only now we’re looking for a rule that 
ends in a substitution.  The idea is that the characters we matched so far may be 
plugged in as a substitution in some other rule. 

To see how this works in practice, consider the string “seven hundred eighty-
nine”.  The first rule in the U.S. set that matches is the rule for 9, which uses up 
“nine”.  Since we haven’t used up all the characters in the parse string, we call 
ourselves recursively, looking for a rule that ends with a substitution and will 
consume more characters.  The first one we find is the rule for 81, which uses up 
“eighty-”.  To calculate our result value, we subtract 81 mod 10 from 81, giving 
us 80.  This is to eliminate all digits to the right of the rule’s power-of-10 position.  
Then we add 9, the base value of the previous matching rule.  So now our result 
is 89. 
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We still haven’t consumed all the characters in the string, though, so we recurse 
again, again looking for a rule that ends in a substitution and consumes more 
characters.  The first one is the rule for 101, which uses up “ hundred ”.  
However, this rule also contains a substitution at the beginning, so it doesn’t 
count as a match unless we can match the substitution.  So we call ourselves 
recursively again, looking for a match for “seven”. 

This time around, we’ll find an exact match, and since this consumes all the 
characters in the string to be parsed, and in the rule, we’re done.  The 
substitution value is 7, multiplied by the power of 10 of the rule containing the 
substitution, which gives us 700.  We already have the minor-substitution value 
(89), so we add that in, and we’re done.  The result is 789. 

There are, however, a few complications.  Consider the string “three hundred 
twenty-five thousand four hundred  thirty-six.”  Parsing “hundred thirty-six” 
proceeds fairly straightforwardly, but when it comes time to fill in the major 
substitution before “hundred,” we’ve got “three hundred twenty-five thousand 
four” left to parse.  Obviously, 325,004 is not what we want for our major 
substitution—that would produce a parse result of 32,500,436.  Therefore, when 
we make recursive calls, we have to restrict the pool of applicable rules.  The 
stipulation is that a substitution can only be filled in by a rule with a power of 10 
that’s less than the power of 10 of the rule containing the substitution.  This 
happens naturally in the formatting algorithm, but we have to account for it 
specifically in the parsing algorithm. 

If we restrict ourselves in this way, then instead of treating “three hundred 
twenty-five thousand four” as the major-substitution value for “hundred thirty-
six”, we use only “four” as the major-substitution value, and then use “four 
hundred thirty-six” as the minor-substitution value for “three hundred twenty-
five thousand”. 

Continuing on, we match “five”, then recurse to produce “twenty-five”, then 
recurse again to produce “three hundred twenty-five”.  At this point, we’ve 
exhausted the string, so we have 325 as the major-substitution value for 
“thousand,” giving us 325,000.  We already had the minor-substitution value, 
436, so we add that in to produce 325,436, and we’re done. 

Russian introduces an additional complication.  In Russian, the words for some 
numbers are substrings of the words for other numbers.  The word for 7 is 
“семь” (“sem”), but the word for 8 is “восемь” (“vosem”).  The word for 100 is 
“сто” (“sto”), but the word for 90 is “девяносто” (“devyanosto”).  Sometimes the 
matching algorithm will handle these words correctly, but sometimes it will stop 
on the wrong word, either causing a parse error or the wrong result.  To deal 
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with this, we must also keep track of a “best-guess value.”  Any time a rule 
matches the text, but doesn’t consume all of the characters in the string to be 
parsed, we parse as far as we can with that rule, and then keep track of our result 
and how many characters we used and continue on through the rule list.  If 
there’s no undisputed winner (i.e., no rule that, after filling in all its 
substitutions, consumes all the characters in the string), then the rule that 
consumed the most characters is declared the winner.  Only at the outermost 
level of recursion is failure to use up all the characters in the string to be parsed 
declared to be a parse error.  (Even this is a judgment call—failure to use up all 
the characters really should only count as a parse error if the caller is parsing a 
longer string from left to right and is assuming the characters at the front of the 
string passed to the spellout-parse algorithm are part of a number.) 

Negative numbers and fractions 

So far, we’ve considered only nonnegative integers.  To be fully general, the 
formatting and parsing algorithms must be able to handle negative numbers and 
numbers with fractional parts. 

To handle negative numbers, we added a negative number rule to the rule list in 
addition to the numbered rules.  The negative number rule is identified by “-:” 
where the rule’s base value would normally go.  This rule would be used for 
formatting all negative numbers.  Its minor-substitution value, instead of being 
the value being formatted mod some power of 10, is simply the absolute value of 
the number being formatted (a major substitution isn’t allowed).  In English, the 
negative number rule would look like this: 
 
-: minus >>; 

Numbers with fractional parts are handled similarly: We define a decimal rule 
that is used to format numbers that have fractional parts.  The decimal rule is 
tagged with “.:” instead of a normal base value, its major substitution is the 
integral part of the number, and its minor substitution is the number’s fractional 
part.  In English, the decimal rule would look like this: 
 
.: << point >>; 

The minor substitution in the negative number rule and the major substitution in 
the decimal rule work like the other substitutions: they look up the appropriate 
text for the substitution value in the same rule set.  The minor substitution in the 
decimal rule is special.  Instead of using the rule set in the normal way, it uses 
the first ten entries in the rule set to spell out the fractional part of the number 
one digit at a time.  In other words, 123.456 would come out as 
 
one hundred twenty-three point four five six 
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This approach is obviously rather arbitrary and inflexible, but it works 
reasonably well most of the time.  We’ll look at a more advanced and flexible 
approach later. 

Alternate rule sets 

Our first implementation of the number spellout formatter had the features listed 
above, which were sufficient for all of the languages we researched and provided 
a good general solution to the problem.  This algorithm can be made much more 
flexible and powerful through the addition of four new features, none of which 
complicates the rule syntax or the formatting algorithm unreasonably. 

Consider the problem of writing out English ordinal numbers.  At first glance, 
this seems like a straightforward changing of names: 
 
zeroth; first; second; third; fourth; fifth; sixth; seventh; eighth; 
   ninth; 
tenth; eleventh; twelfth; thirteenth; fourteenth; fifteenth; sixteenth; 
   seventeenth; eighteenth; nineteenth; 
twentieth; twenty->>; 
30: thirtieth; thirty->>; 
40: fortieth; forty->>; 
50: fiftieth; fifty->>; 
60: sixtieth; sixty->>; 
70: seventieth; seventy->>; 
80: eightieth; eighty->>; 
90: ninetieth; ninety->>; 
100: << hundredth; << hundred >>; 
1000: << thousandth; << thousand >>; 
1,000,000: << millionth; << million >>; 
1,000,000,000: << billionth; << billion >>; 
1,000,000,000,000: << trillionth; << trillion >>; 
1,000,000,000,000,000: OUT OF RANGE!; 

But if you use this rule set to format 937, you’ll get “ninth hundred thirty-
seventh” instead of “nine hundred thirty-seventh.”  You don’t actually want to 
call this rule set recursively to fill in the major substitution values; you actually 
want their cardinal-number counterparts.  The only way to do this with a 
conventional rule set would be to introduce rules at every multiple of 100, 1000, 
1,000,000, and so on, which isn’t feasible.  Instead, what you really want to do is 
leverage the rule set we already have for the cardinal numbers to fill in the major 
substitution values. 

In other words, we want a single formatter to own more than one rule set, and 
we want each rule to be able to specify which of the formatter’s rule sets should 
be used to fill in a substitution. 

To specify multiple rule sets in a single formatter description, we adopt the 
convention that a rule set name begins with %.  Each rule set then begins with its 
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name, followed by a colon.  If a substitution should call a rule set other than the 
one that owns it, you specify this by putting the rule set name between the 
substitution characters (e.g., if a minor substitution should call rule set %foo, 
you’d say “>%foo>”).  With these additions, a rule set that will handle both 
cardinal and ordinal numbers in English would look like this: 
 
%card: 

zero; one; two; three; four; five; six; seven; eight; nine; 
ten; eleven; twelve; thirteen; fourteen; fifteen; sixteen; 
   seventeen; eighteen; nineteen; 
twenty[->>]; 
30: thirty[->>]; 
40: forty[->>]; 
50: fifty[->>]; 
60: sixty[->>]; 
70: seventy[->>]; 
80: eighty[->>]; 
90: ninety[->>]; 
100: << hundred[ >>]; 
1000: << thousand[ >>]; 
1,000,000: << million[ >>]; 
1,000,000,000: << billion[ >>]; 
1,000,000,000,000: << trillion[ >>]; 
1,000,000,000,000,000: OUT OF RANGE!; 

%ord: 
zeroth; first; second; third; fourth; fifth; sixth; seventh; eighth; 
   ninth; 
tenth; eleventh; twelfth; thirteenth; fourteenth; fifteenth; 
   sixteenth; seventeenth; eighteenth; nineteenth; 
twentieth; twenty->>; 
30: thirtieth; thirty->>; 
40: fortieth; forty->>; 
50: fiftieth; fifty->>; 
60: sixtieth; sixty->>; 
70: seventieth; seventy->>; 
80: eightieth; eighty->>; 
90: ninetieth; ninety->>; 
100: <%card< hundredth; <%card< hundred >>; 
1000: <%card< thousandth; <%card< thousand >>; 
1,000,000: <%card< millionth; <%card< million >>; 
1,000,000,000: <%card< billionth; <%card< billion >>; 
1,000,000,000,000: <%card< trillionth; <%card< trillion >>; 
1,000,000,000,000,000: OUT OF RANGE!; 

 The formatter’s format() function would now take an additional parameter that 
allows the user to specify which rule set to use to format a particular number.  
This ability also allows us to specify rule sets for languages that have different 
inflected forms for numbers depending on what they’re referring to. 

Alternate rule sets also allow us to simplify some of the more complicated rule 
sets.  In French, for example, a two-digit number has “et” between the digits 
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when the ones digit is 1, but not when the ones digit is 2 through 9, leading us to 
require three rules for each of the multiples of 10: 
 
20: vingt; vingt-et-un; vingt->> 
30: trente; trente-et-un; trente->> 
40: quarante; quarante-et-un; quarante->>; 
50: cinquante; cinquante-et-un; cinquante->>; 
60: soixante; soixante-et-un; soixante->>; 

We can eliminate some of this repetition by specifying the ones-digit behavior as 
a separate rule set: 
 
%main: 

vingt[->%%alt-ones>]; 
30: trente[->%%alt-ones>]; 
40: quarante[->%%alt-ones>]; 
50: cinquante[->%%alt-ones>]; 
60: soixante[->%%alt-ones>]; 

%%alt-ones: 
 ; et-un; =%main=; 

Note a few interesting things about this sample rule set: First, the alternate rule 
set’s name begins with two %s.  We’ve adopted the convention that rule sets that 
are meant to be called only by other rule sets, and not by the formatter’s calling 
routine, have names that begin with %%. 

Second, %%alt-ones begins with a bare semicolon.  This says that the zero rule 
for this rule set is the empty string (in some future examples, we’ll use “0:;” for 
clarity). 

Finally, and most importantly, note the third rule in %%alt-ones: “=%main=;”.  
This is a new type of substitution: a same-value substitution.  This works the same 
way as the other types of substitutions, except that instead of dividing the 
number being formatted by something to get a substitution value, the value 
being formatted is passed through unchanged as the substitution value.  Among 
other things, this lets one rule set defer handling of certain ranges of numbers to 
another rule set instead of having to re-specify all those rules.  This is what we’re 
using it for here.  Same-value substitutions turn out to be very useful, as we’ll see 
in some later examples. 

Alternate radices 

The basic number-spellout formatting algorithm is based on powers of 10.  It 
would be a reasonably simple thing to imagine extending it to allow radices 
other than 10. Consider the French rules: 
 
60: soixante; soixante-et-un; soixante->>; 
70: soixante-dix; soixante et onze; soixante-douze; soixante-treize; 
   soixante-quatorze; soixante-quinze; soixante-seize; 
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   soixante-dix-sept; soixante-dix-huit; soixante-dix-neuf; 
80: quatre-vingts; quatre-vingt->>; 
90: quatre-vingt-dix; quatre-vingt-onze; quatre-vingt-douze; 
   quatre-vingt-treize; quatre-vingt-quatorze; 
   quatre-vingt-quinze; quatre-vingt-seize; 
   quatre-vingt-dix-sept; quatre-vingt-dix-huit; 
   quatre-vingt-dix-neuf; 
cent[ >>]; 

French has no words for 70, 80 or 90.  80 is rendered as “quatre-vingts” (“four 
twenties”), and numbers progress by score.  Thus, for example, 72 is “soixante 
douze” (“sixty-twelve”) and 98 is “quatre-vingt-dix-huit” (“eighty-eighteen,” or 
literally, “four-twenty-ten-eight”).  There is no good way to handle this kind of 
thing with the original rule syntax, so we had to specify individual rules for all 
the numbers between 70 and 79 and between 90 and 99. 

Alternate rule sets can be used to solve this problem to some degree… 
 
%main: 

vingt[->%%alt-ones>]; 
30: trente[->%%alt-ones>]; 
40: quarante[->%%alt-ones>]; 
50: cinquante[->%%alt-ones>]; 
60: soixante[->%%alt-ones>]; 
71: soixante et onze; 
72: soixante->%%teens>; 
80: quatre-vingts; quatre-vingt->>; 
90: quatre-vingt->%%teens>; 
100: cent[ >>]; 

%%alt-ones: 
 ; et-un; =%main=; 
%%teens: 
 dix; onze; douze; treize; quatorze; quinze; seize; dix-sept; 
    dix-huit; dix-neuf; =%main=; 

…but a more elegant approach would be to specify that the sixties and eighties 
proceed by score.  We can do this by specifying an alternate radix for these rules.  
The alternate radix follows the base value and is separated from it by a slash: 
 
60/20: soixante[->%%alt-ones>]; 
71: soixante et onze; 
72/20: soixante->%%alt-ones>; 
80: quatre-vingts; 
81/20: quatre-vingt->>; 
100: cent[ >>]; 

To fill in the minor substitution for the rules for 60, 72, and 81, we divide the 
value being formatted by 20 rather than 10.  This means the ones digit can be 
anything up to 19, and we can recurse and look up the words for 11 through 19 
in their normal positions in the rule list without having to specify them again in a 
new rule list.  (71 is a pathological case in French; it always requires its own rule.) 
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Alternate radices could also be used to format a number in a base other than 10.  
For example, say we wanted to format dozens: 
 
zero; one; two; three; four; five; six; seven; eight; nine; ten; 
   eleven; 
12/12: << dozen[and >>]; 
144/12: << gross[ >>]; 

Fraction rule sets 

Alternate rule sets can also be used to great effect in formatting numbers with 
fractional parts.  In some languages, “point four five six” is not allowed; you 
need to say “and four hundred fifty-six thousandths” instead.  We can handle 
this by allowing the minor substitution in a decimal rule to call another rule set: 
 
%main; 
 zero; one; two; three; four; five; six; seven; eight; nine; 
 (and so on…) 
 .: << and >%%dec>; 
%%dec: 
 10: <%main< tenths; 
 100: <%main< hundredths; 
 1000: <%main< thousands; 
 10,000: <%main< ten-thousandths; 
 (and so on…) 

When a rule set is called from the minor substitution of a decimal rule (i.e., when 
it is being used to format the fractional part of a number), it is called a fraction 
rule set.  The base values and substitutions in a fraction rule set have different 
meanings than they do in a normal rule set: In a fraction rule set, an appropriate 
rule is found by multiplying the number being formatted by the base value of 
each rule one by one until we get an integral result (or until the list is exhausted, 
in which case the last rule is used and the numerator is rounded).  In other 
words, the base values represent possible denominators for the fraction.  The 
major substitution value is obtained by multiplying the value being formatted by 
the rule’s base value: that is, it is the numerator of the fraction.  Thus, formatting 
123.456 with this rule set will yield “one hundred twenty-three and four hundred 
fifty-six thousandths,” while formatting 123.45 will yield “one hundred twenty-
three and forty-five hundredths.” 

There are a couple of small problems with this rule set that are easily solved with 
alternate rule sets.  First, values below 1 will come out with “zero and” on the 
front.  If you want to see 0.45 as “forty-five hundredths”, you would have to add 
another rule set: 
 
%main; 
 zero; one; two; three; four; five; six; seven; eight; nine; 
 (and so on…) 
 .: <%%and<>%%dec>; 
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%%and: 
 0:; 
 1: =%main= and ; 
%%dec: 
 10: <%main< tenths; 
 100: <%main< hundredths; 
 1000: <%main< thousands; 
 10,000: <%main< ten-thousandths; 
 (and so on…) 

Also, as written, the above rule set will format 4.1 as “four and one tenths,” 
which is wrong.  We can also handle this with another rule set: 
 
%main; 
 zero; one; two; three; four; five; six; seven; eight; nine; 
 (and so on…) 
 .: <%%and<>%%dec>; 
%%and: 
 0:; 
 1: =%main= and ; 
%%dec: 
 10: <%main< tenth<%%s<; 
 100: <%main< hundredth<%%s<; 
 1000: <%main< thousand<%%s<; 
 10,000: <%main< ten-thousandth<%%s<; 
 (and so on…) 
%%s: 
 s; ; s; 

%%s will produce an s with a value of anything other than 1; for 1, it will return 
the empty string.  (Of course, this trick is only guaranteed to work in English; for 
languages where you can’t pluralize a word so easily, each rule in %%dec would 
have to branch to a separate rule set with the appropriate singular and plural 
words in it.) 

Notice that we now have two major substitutions in the same rule for every rule 
in %%dec.  This is allowed.  A rule may only have two substitutions, but there 
are no restrictions on their type (other than that major substitutions are not 
allowed in negative number rules and minor substitutions are not allowed in 
fraction rule sets). 

It’s worth pointing out that this approach to formatting the fractional part of a 
number isn’t infinitely flexible.  It lets you specify which denominators you care 
about, which can be quite useful, as the examples show.  But if you want the 
system to take an arbitrary floating-point value and automatically format it as a 
fraction using the closest integral denominator, this design won’t allow that. 

Formatting as numerals 
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One of the primary uses for a number-spellout engine is to write out the amount 
on a check.  Normally, check amounts are written with the dollar amount in 
words and the cents amount in numerals: “One hundred twenty-three and 
45/100 dollars” or “One hundred twenty-three dollars and 45 cents.”  This 
implies another feature should be added to the number spellout engine to allow 
the spelling out of part or all of a number in numerals. 

We use the substitution notation for this.  Instead of specifying a rule set to use to 
fill in a substitution, you can specify that a substitution be filled in with 
numerals. 

In our implementation of the system, we do this by putting a pattern string for a 
Java DecimalFormat object between the substitution characters: for example, 
“>00>” means “fill in the minor substitution by writing out the value in digits 
with a minimum of two digits.”  “<#,##0.###<” means “fill in the major 
substitution by writing out its value with a minimum of one digit to the left of 
the decimal, up to three decimal places, and commas separating the thousands.”  
“=0=” means “fill in the same-value substitution [i.e., write out the value being 
formatted] in numerals, with a minimum of one digit.”  Although 
DecimalFormat allows other things at the beginning of a pattern, to make the 
rule parser for the spellout formatter simpler, we require that the DecimalFormat 
pattern begin with a # or a 0. 

Using this, we can write check amounts out in the first format with the following 
rules: 
 
%usr: 
 0: =%%main= and 00/100 dollars; 
 .: <%%main< and >%%cents> dollars; 
%%main: 

zero; one; two; three; four; five; six; seven; eight; nine; 
ten; eleven; twelve; thirteen; fourteen; fifteen; sixteen; 
   seventeen; eighteen; nineteen; 
twenty[->>]; 
30: thirty[->>]; 
40: forty[->>]; 
50: fifty[->>]; 
60: sixty[->>]; 
70: seventy[->>]; 
80: eighty[->>]; 
90: ninety[->>]; 
100: << hundred[ >>]; 
1000: << thousand[ >>]; 
1,000,000: << million[ >>]; 
1,000,000,000: << billion[ >>]; 
1,000,000,000,000: << trillion[ >>]; 
1,000,000,000,000,000: OUT OF RANGE!; 

%%cents: 
 100: <00</100; 
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And the second format would use the following rules: 
 
%usr: 
 0: =%%main= dollars; 
 .: << and >%%cents>; 
%%main: 

zero; one; two; three; four; five; six; seven; eight; nine; 
ten; eleven; twelve; thirteen; fourteen; fifteen; sixteen; 
   seventeen; eighteen; nineteen; 
twenty[->>]; 
30: thirty[->>]; 
40: forty[->>]; 
50: fifty[->>]; 
60: sixty[->>]; 
70: seventy[->>]; 
80: eighty[->>]; 
90: ninety[->>]; 
100: << hundred[ >>]; 
1000: << thousand[ >>]; 
1,000,000: << million[ >>]; 
1,000,000,000: << billion[ >>]; 
1,000,000,000,000: << trillion[ >>]; 
1,000,000,000,000,000: OUT OF RANGE!; 

%%cents: 
 100: <0< cent<%%s<; 
%%s: 
 s; ; s; 

Other uses 

One of the great strengths of this rule-based technique for formatting numbers is 
that it can be used not only for spelling out numeric values in words, but also for 
a wide variety of other number-formatting tasks that are more complex than 
simple Western-numeral output. 

For instance, it works very well for formatting major and minor units when they 
aren’t related by a factor of 10.  One way of formatting a number of seconds as 
hours, minutes, and seconds would be 
 
%usr: 
 0: 0 seconds; 1 second; <0< seconds; 
 60: =%%hms=; 
%%hms: 
 0: =00=; 
 60/60: <00<:>>; 
 3600/60: <0<:>>; 

It can also be useful for formatting fractional values.  American stock prices, 
which are usually in eighths or sixteenths of a dollar instead of cents, could be 
formatted this way: 
 
%main: 
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 0: =0=; 
 .: <0<>%%frac>; 
%%frac: 
 2: ' 1/2; 
 4: ' <0</4; 
 8: ' <0</8; 
 16: ' <0</16; 
 32: ' <0</32; 
 100: .<00<; 

[The apostrophes are an extra little bit of syntax that allows a rule to begin with 
leading whitespace: If the first character in a rule’s rule text is an apostrophe, the 
apostrophe is deleted (if you want the first character to be an apostrophe, you put 
two apostrophes).] 

This approach can also be used for message formatting: 
 
The search found no files.; 
The search found one file.; 
The search found =0= files.; 

or 
 
%usr: 
 There =%%main= free space on the disk. 
%%main: 
 is no; 
 are =0= bytes of; 
 1024/1024: is <0<K of; 
 1,048,576/1024: are <0<Mb of; 

This example also shows how we can change the units used to denominate a 
quantity depending on its magnitude. 

The rule-based approach is also useful for numeration systems other than 
Western numerals.  We’ve already seen how we can use the rule-based formatter 
to show numbers using CJK numerals (i.e., Han characters).  Traditional Hebrew 
numerals would look something like this (shown with left-to-right character 
ordering): 
 

 ;ט ;ח ;ז ;ו ;ה ;ד ;ג ;ב ;א ;

 ;<<צ :90 ;<<פ :80 ;<<ע :70 ;<<ס :60 ;<<נ :50 ;<<מ :40 ;<<ל :30 ;<<כ :20 ;<<י :10

 ;!OUT OF RANGE ;<<ת :400 ;<<ש :300 ;<<ר :200 ;<<ק :100

Roman numerals would look like this: 
 
; I; II; III; IV; V; VI; VII; VIII; IX; 
10: X[>>]; 
20: XX[>>]; 
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30: XXX[>>]; 
40: XL[>>]; 
50: L[>>]; 
60: LX[>>]; 
70: LXX[>>]; 
80: LXXX[>>]; 
90: XC[>>]; 
100: C[>>]; 
200: CC[>>]; 
300: CCC[>>]; 
400: CD[>>]; 
500: D[>>]; 
600: DC[>>]; 
700: DCC[>>]; 
800: DCCC[>>]; 
900: CM[>>]; 
1000: M[>>]; 
2000: MM[>>]; 
3000: MMM[>>]; 
4000: OUT OF RANGE!; 

And finally, we can come full circle and use the rule-based formatter to format 
regular Western numerals: 
 
0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 
10: <<>>; 
100: <<>>; 
1000: <<,>>; 
1,000,000: <<,>>; 
1,000,000,000: <<,>>; 
1,000,000,000,000: <<,>>; 
1,000,000,000,000,000: OUT OF RANGE!; 
-: ->>; 
.: <<.>>; 

Limitations 

While this particular rule-based approach to formatting is suitable for most 
numeric formatting tasks, there are some things it doesn’t handle at all, or which 
require an inordinate amount of work. 

For instance, the way numbers with fractional parts are handled handles the 
most common cases, but will break down in some of the more esoteric instances, 
such as showing irrational values symbolically (e.g., rendering 3.1415926… as 
“π ”) or rendering any floating-point value as the nearest possible 

fraction. 

In the same way, the way negative numbers are handled works well in the most 
common cases, but becomes rather unwieldy when a negative number is 
rendered as something other than the absolute value with an added string at the 
beginning or ending.  This situation will generally only come up when 0 is 
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rendered as something other than 0.  (In date formatting, for example, dates are 
usually stored as the number of seconds before or after some reference date and 
then translated into a displayable format according to the conventions of some 
calendar.  In that type of situation, the formatted forms of negative numbers 
aren’t related to the formatted forms of their absolute values.) 

Finally, this approach to formatting and parsing is based on the different 
component parts of the formatted number being related to each other through 
multiplication and division.  If a substitution value should be derived through 
addition and subtraction, or through exponentiation and logarithms, this can 
generally only be done through the use of many extra rules and alternate rule 
sets.  This makes the display of numbers in scientific notation a little 
cumbersome: the exponent can’t be a substitution value with the rest of the form 
in a single rule’s rule text.  Instead, you need a new rule supplying a new 
exponent value at each power of 10 position.  

Conclusion 

The rule-based approach to numeric formatting is a simple, yet powerful and 
versatile, solution to a wide variety of numeric-formatting problems.  Not only is 
it an excellent solution for the number-spellout problem, providing a simple way 
to accommodate the various ways different languages spell out numbers, but it 
also provides solutions to many other number-formatting problems that are 
beyond the capabilities of a conventional numeric-formatting engine. 

IBM has filed patent applications for this technology, but intends to make the 
Java implementation freely available. C and C++ implementations are available 
as part of IBM’s International Classes technology.  Look for information on both 
at http://www.ibm.com/java.   


